skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Campbell, James R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fairbanks-North Star Borough, Alaska (FNSB) regularly experiences some of the worst wintertime air quality in the United States. 
    more » « less
  2. Brown carbon (BrC) plays an important role in global radiative budget but there have been few studies on BrC in Arctic despite rapid warming and increasing wildfires in this region. Here we investigate the optical properties of BrC from boreal fires in Alaska summer, with two sets of measurements from PILS-LWCC-TOC (Particle-Into-Liquid-Sampler – Liquid-Waveguide Capillary flow-through optical Cell - Total-Organic-Carbon analyzer) and filter measurements. We show that during intense wildfires, the mass absorption coefficient at 365 nm (MAC365) from water soluble organic carbon (WSOC) remained stable at ∼1 m2 g−1. With all plumes sampled and derived transport time, we show a decrease of MAC365 with plume age, with a shorter photobleaching lifetime (∼11 h) at 365 nm compared to 405 nm (∼20 h). The total absorption by organic aerosols measured from filters at 365 nm is higher than the absorption by WSOC by a factor 2–3, suggesting a dominant role of insoluble organic carbon. Overall BrC dominates absorption in the near-ultraviolet and visible radiation during wildfire season in Alaska summer. 
    more » « less
  3. The prevailing view for aqueous secondary aerosol formation is that it occurs in clouds and fogs, owing to the large liquid water content compared to minute levels in fine particles. Our research indicates that this view may need reevaluation due to enhancements in aqueous reactions in highly concentrated small particles. Here, we show that low temperature can play a role through a unique effect on particle pH that can substantially modulate secondary aerosol formation. Marked increases in hydroxymethanesulfonate observed under extreme cold in Fairbanks, Alaska, demonstrate the effect. These findings provide insight on aqueous chemistry in fine particles under cold conditions expanding possible regions of secondary aerosol formation that are pH dependent beyond conditions of high liquid water. 
    more » « less